Elise Miller-Hooks
GMU


PhD Student:
Jason (Chih-Sheng) Chou

Jason Chou
PhD, May 2010, Civil and Environmental Engineering,
UMD

Data Analytics, Sr Air Traffic Flow Management
and Enroute Concepts Analysis
MITRE Corporation
7525 Colshire Drive, McLean, VA 22102


Email: chihsheng@mitre.org

Dissertation Title:

Understanding the Impact of Incidents and Incident Management Programs on Freeway Mobility and Safety

Abstract:

Despite significant technological achievements over past decades, and institutional support for Intelligent Transportation System (ITS), it is not possible to prevent all traffic incidents. Numerous incidents occur every day along U.S. freeways and traffic incident management (TIM) programs have been proposed and implemented to mitigate their impact. This dissertation proposes various tools to aid in the evaluation of proposed TIM programs, contributing, thus, to the general study area of freeway incident management. In addition, moving violations specific to concurrent flow lane operations are conceived as a type of transient incident. Their impact on mobility and safety is considered. Techniques to address four key areas are proposed. First, a methodology that considers the dynamics of incident impact given a primary incident’s properties and prevailing traffic conditions for identifying secondary incidents from a database is proposed. This method is computationally efficient and overcomes deficiencies of other existing techniques, with utility in any context in which the study of secondary incidents is warranted. A three-stage time-saving process is developed for conducting TIM program benefit evaluations. The process aids in sampling a relatively small set of good quality incident scenarios that can represent historical incident data and overcomes the computational burden encountered when evaluating TIM program’s benefit by simulation. Modeling techniques are proposed for simulating violations associated with the operation of concurrent flow lanes. Results from a case study show significant impact to mobility that grows nonlinearly with increasing violation rate. Such illegal traffic maneuvers contribute to increased speed variation and congestion, ultimately affecting safety. Finally, diversion strategies that exploit existing capacity of managed lanes for the purpose of reducing the impact of an incident in the general purpose lanes are evaluated. Simulation modeling methodologies were developed for modeling freeway incidents and studied diversion strategy implementations. Experimental findings indicate benefits of diversion that are contrary to qualitatively developed recommendations in the literature.

Top of Page




Elise Miller-Hooks, Ph.D.
Professor
Bill & Eleanor Hazel Chair in Infrastructure Engineering

Phone: 703.993.1685
Email: miller@gmu.edu

Office: 4614 Nguyen Engineering Building

Address:
Sid and Reva Dewberry Department of Civil, Environmental and Infrastructure Engineering
George Mason University
4400 University Drive, MS 6C1
Fairfax, VA 22030
USA


Additional Resources

Students

Home

 


Volgenau School of Engineering
George Mason University
©