Elise Miller-Hooks
GMU


Publications: Journal 75

“Quantifying the Resilience of an Urban Traffic Signal-Power Coupled System"

Reliability Engineering & Systems Safety, 163, 79–94
H. Fotouhi, S. Moryadee and E. Miller-Hooks (2017)

ABSTRACT

Transportation system resilience has been the subject of several recent studies. To assess the resilience of a transportation network, however, it is essential to model its interactions with and reliance on other lifelines. Prior works might consider these interactions implicitly, perhaps in the form of hazard impact scenarios wherein services from a second lifeline (e.g. power) are precluded due to a hazard event. In this paper, a bi-level, mixed-integer, stochastic program is presented for quantifying the resilience of a coupled traffic-power network under a host of potential natural or anthropogenic hazard-impact scenarios. A two-layer network representation is employed that includes details of both systems. Interdependencies between the urban traffic and electric power distribution systems are captured through linking variables and logical constraints. The modeling approach was applied on a case study developed on a portion of the signalized traffic-power distribution system in southern Minneapolis. The results of the case study show the importance of explicitly considering interdependencies between critical infrastructures in transportation resilience estimation. The results also provide insights on lifeline performance from an alternate power perspective.





Elise Miller-Hooks, Ph.D.
Professor
Bill & Eleanor Hazel Chair in Infrastructure Engineering

Phone: 703.993.1685
Email: miller@gmu.edu

Office: 4614 Nguyen Engineering Building

Address:
Sid and Reva Dewberry Department of Civil, Environmental and Infrastructure Engineering
George Mason University
4400 University Drive, MS 6C1
Fairfax, VA 22030
USA


<<Previous

More Publications



Volgenau School of Engineering
George Mason University
©