Elise Miller-Hooks

Publications: Journal 72

“Risk-Based Models for Emergency Shelter and Exit Design in Buildings"

Annals of Operations Research, 262 (1), 185–212
R. Faturechi, S. Isaac, E. Miller-Hooks, L. Feng (2018)


Mathematical models are presented that support the design of shelters and exits in buildings, along with hallway fortification strategies and associated evacuation paths. The objective of these models is to optimally protect building users and prevent casualties during emergencies by minimizing the risk to which evacuees are exposed during evacuation and after reaching their destinations. The models involve stochastic programming and robust optimization concepts under both user equilibrium (selfish) and system optimal (altruistic) conditions. These approaches are compared in a case study involving a single-story building. A multi-hazard approach is utilized in which the performance of a design is tested given various possible future emergency scenarios.



Elise Miller-Hooks, Ph.D.
Bill & Eleanor Hazel Chair in Infrastructure Engineering

Phone: 703.993.1685
Email: miller@gmu.edu

Office: 4614 Nguyen Engineering Building

Sid and Reva Dewberry Department of Civil, Environmental and Infrastructure Engineering
George Mason University
4400 University Drive, MS 6C1
Fairfax, VA 22030


More Publications

Volgenau School of Engineering
George Mason University