Elise Miller-Hooks

Publications: Conference 20

“A porous flow approach to modeling heterogeneous traffic in disordered systems”

Proceedings of the 19th International Symposium on Transportation and Traffic Theory (ISTTT), University of California at Berkeley, July 2011.
Nair, R., H. Mahmassani and E. Miller-Hooks (2011)

A continuum model that describes a disordered, heterogeneous traffic stream is presented. Such systems are widely prevalent in developing countries where classical traffic models cannot be readily applied. The characteristics of such systems are unique since drivers of smaller vehicles exploit their maneuverability to move ahead through lateral gaps at lower speeds. At higher speeds, larger vehicles press their advantage of greater motive power. The traffic stream at the microscopic level is disordered and defines a porous medium. Each vehicle is considered to move through a series of pores defined by other vehicles. A speed-density relationship that explicitly considers the pore space distribution is presented. This captures the considerable dynamics between vehicle classes that are overlooked when all classes are converted to a reference class (usually Passenger Car Equivalents) as is traditionally done. Using a finite difference approximation scheme, traffic evolution for a two-class traffic stream is shown.


Elise Miller-Hooks, Ph.D.
Bill & Eleanor Hazel Chair in Infrastructure Engineering

Phone: 703.993.1685
Email: miller@gmu.edu

Office: 4614 Nguyen Engineering Building

Sid and Reva Dewberry Department of Civil, Environmental and Infrastructure Engineering
George Mason University
4400 University Drive, MS 6C1
Fairfax, VA 22030


Volgenau School of Engineering
George Mason University